Complementary Variational Principles for Steady Heat Conduction with Mixed Boundary Conditions

N. ANDERSON AND A. M. ARTHURS

Department of Mathematics, University of York, England.

(Received March 17, 1971)

SUMMARY

New stationary, maximum and minimum principles associated with the boundary value problem of steady heat conduction with general boundary conditions are derived in a unified manner from the theory of complementary variational principles. One of the results contains the Brand–Lahey [3] stationary principle as a special case.

1. Introduction

There has been considerable interest recently in formulating the problem of heat conduction as a variational problem [1, 2, 3]. For example, Hays [1] has given an integral which is stationary for the temperature distribution satisfying the heat conduction equation in a region R, provided that at all points of the surface of R either the temperature is prescribed or the normal heat flux vanishes. Butler [2] gives a much simpler integral for steady problems with the same type of boundary conditions.

However, one might have the normal heat flux prescribed, rather than vanishing, on a portion of the bounding surface, or the even more complicated case when neither the temperature nor the normal heat flux is given but rather a relation between them as, for example, for a surface heated or cooled by convection or radiation. Stationary principles associated with these more complicated problems have been discussed by Brand and Lahey [3]. In this paper we derive new maximum and minimum principles for such problems from the theory of complementary variational principles [4]. One of our results contains the stationary principle of Brand and Lahey [3] as a special case.

2. Problem I

We consider the problem of finding the steady temperature distribution τ in a region R bounded by a surface S, subject to the boundary conditions that (i) τ is prescribed on S_1 , a portion of S, and (ii) the normal heat flux $\mathbf{n} \cdot \mathbf{K}(\tau)$ grad τ is prescribed on $S_2 = S - S_1$, where $\mathbf{K}(\tau)$, the thermal conductivity, is some known function of τ . The equations of this problem are therefore

$$\operatorname{div}\left[K\left(\tau\right)\operatorname{grad}\tau\right] = 0 \quad \text{in } R, \tag{2.1}$$

with

$$\mathbf{n} \cdot K(\tau) \operatorname{grad} \tau = q_B \operatorname{on} S_2 , \qquad (2.3)$$

where τ_B and q_B are known functions on the boundary.

We now transform to a new dependent variable φ by setting

$$\varphi = \int_{\tau_0}^{\tau} K(v) dv , \qquad (2.4)$$

where τ_0 is an arbitrary constant. It follows from (2.4) that

grad $\varphi = K(\tau)$ grad τ .

 $\tau = \tau_{\rm R}$ on S_1 ,

(2.5)

(2.2)

Also we define

$$\varphi_B = \int_{\tau_0}^{\tau_B} K(v) \, dv \,, \tag{2.6}$$

which is the prescribed value of φ on S_1 corresponding to (2.2). Hence the problem described by equations (2.1) – (2.3) becomes

$$\nabla^2 \varphi = 0 \quad \text{in } R \,, \tag{2.7}$$

with

$$\varphi = \varphi_B \text{ on } S_1 , \qquad (2.8)$$

$$\mathbf{n} \cdot \operatorname{grad} \varphi = q_B \quad \text{on} \quad S_2 \; . \tag{2.9}$$

The variational problem associated with this boundary value problem will now be discussed.

3. Variational Principles for Problem I

To use the theory of complementary variational principles [4] we rewrite (2.7) in the canonical form

grad
$$\Phi = U = \frac{\partial H}{\partial U}$$
 in R , (3.1)

$$-\operatorname{div} \boldsymbol{U} = 0 = \frac{\partial H}{\partial \Phi} \text{ in } \boldsymbol{R}, \qquad (3.2)$$

with and

$$\Phi = \varphi_B \text{ on } S_1 , \qquad (3.3)$$

$$\mathbf{n} \cdot \mathbf{U} = q_B \quad \text{on} \quad S_2 \; . \tag{3.4}$$

A suitable Hamiltonian H in (3.1) and (3.2) is given by

$$H(U, \Phi) = \frac{1}{2}U \cdot U . \tag{3.5}$$

The exact solution of this problem will be denoted by (u, φ) . Now we introduce the associated generalized action functional [4, page 21].

$$I(U, \Phi) = \int_{R} \left[U \cdot \text{grad } \Phi - H(U, \Phi) \right] dV + \left[\text{boundary terms} \right].$$
(3.6)

In the present case this functional takes the form

$$I(U, \Phi) = \int_{R} U \cdot \operatorname{grad} \Phi dV - \frac{1}{2} \int_{R} U \cdot U dV - \int_{S_{1}} \mathbf{n} \cdot U(\Phi - \varphi_{B}) dS - \int_{S_{2}} q_{B} \Phi dS , \quad (3.7)$$

=
$$\int_{R} (-\operatorname{div} U) \Phi dV - \frac{1}{2} \int_{R} U \cdot U dV + \int_{S_{1}} \mathbf{n} \cdot U \varphi_{B} dS + \int_{S_{2}} (\mathbf{n} \cdot U - q_{B}) \Phi dS . \quad (3.8)$$

The surface integrals in (3.7) and (3.8), corresponding to the mixed boundary conditions (3.3) and (3.4), were derived by Arthurs [5].

The following results are readily verified.

3(a). First variational principle. For arbitrary independent functions U, Φ the functional $I(U, \Phi)$ is stationary at (u, ϕ) , the solution pair of the boundary value problem given by (3.1) – (3.4).

3(b). Second variational principle. Let Φ be an admissible function, which need not satisfy any boundary conditions. Then using (3.7) we define a functional $J(\Phi)$ by

Journal of Engineering Math., Vol. 6 (1972) 23-30

$$J(\Phi) = I(\text{grad } \Phi, \Phi) \tag{3.9}$$

$$= \frac{1}{2} \int_{R} (\operatorname{grad} \Phi)^2 dV - \int_{S_1} (\Phi - \varphi_B) \mathbf{n} \cdot \operatorname{grad} \Phi dS - \int_{S_2} q_B \Phi dS$$
(3.10)

$$=I(\boldsymbol{u},\boldsymbol{\varphi})+\delta^2 J, \qquad (3.11)$$

where

$$\delta^2 J = \frac{1}{2} \int_R \left[\operatorname{grad} \left(\Phi - \varphi \right) \right]^2 dV - \int_{S_1} \left(\Phi - \varphi_B \right) \mathbf{n} \cdot \operatorname{grad} \left(\Phi - \varphi \right) dS$$
(3.12)

is the second variation. Thus $J(\Phi)$ in (3.10) is stationary at φ .

3(c). Third variational principle. Let U be an admissible function which satisfies the conditions div U = 0 in V. (3.13)

$$\mathbf{W} = \mathbf{C} \qquad (3.15)$$

$$\boldsymbol{n} \cdot \boldsymbol{U} = \boldsymbol{q}_B \quad \text{on} \quad \boldsymbol{S}_2 \;. \tag{3.14}$$

Using (3.8) we define the functional G(U) by

 $G(U) = I(U, \Phi), [U \text{ subject to conditions (3.13) and (3.14)}]$ (3.15)

$$= -\frac{1}{2} \int_{R} \boldsymbol{U} \cdot \boldsymbol{U} d\boldsymbol{V} + \int_{S_{1}} \boldsymbol{n} \cdot \boldsymbol{U} \varphi_{B} dS$$
(3.16)

$$= I(\boldsymbol{u}, \varphi) + \delta^2 G , \qquad (3.17)$$

where

$$\delta^2 G = -\frac{1}{2} \int_R (U - u)^2 dV$$
(3.18)

is the second variation. Thus G(U) in (3.16) is stationary at u.

Since the exact function u is related to φ by $u = \text{grad } \varphi$, it is desirable to choose the function U to have the form

$$\boldsymbol{U} = \operatorname{grad} \boldsymbol{\Psi} \,, \tag{3.19}$$

where Ψ is intended to be an approximation to φ . Then from (3.16)

$$G(\text{grad }\Psi) = -\frac{1}{2} \int_{R} (\text{grad }\Psi)^2 dV + \int_{S_1} \varphi_B \frac{\partial \Psi}{\partial n} dS, \qquad (3.20)$$

where by (3.13) and (3.14) the function Ψ must satisfy the essential conditions

$$\nabla^2 \Psi = 0 \quad \text{in} \quad V \,, \tag{3.21}$$

$$\frac{\partial \Psi}{\partial n} = q_B \text{ on } S_2. \tag{3.22}$$

3(d). Minimum principle. If the function Φ in (3.10) is made to satisfy the boundary condition

$$\Phi = \varphi_B \text{ on } S_1 , \qquad (3.23)$$

we see from (3.12) that $\delta^2 J$ is non-negative. Hence, by (3.11), we obtain the minimum principle

$$I(\boldsymbol{u},\varphi) \leq J(\Phi) , \qquad (3.24)$$

where

$$J(\Phi) = \frac{1}{2} \int_{R} (\text{grad } \Phi)^2 \, dV - \int_{S_2} q_B \Phi \, dS \qquad (\Phi = \varphi_B \text{ on } S_1).$$
(3.25)

3(e). Maximum principle. Since $\delta^2 G$ in (3.18) is non-positive, it follows from (3.17) that the maximum principle

$$G(\operatorname{grad} \Psi) \leq I(\boldsymbol{u}, \varphi)$$
 (3.26)

holds, where

$$G(\operatorname{grad} \Psi) = -\frac{1}{2} \int_{R} (\operatorname{grad} \Psi)^{2} dV + \int_{S_{1}} \varphi_{B} \frac{\partial \Psi}{\partial n} dS \qquad \left(\nabla^{2} \Psi = 0 \text{ in } V, \frac{\partial \Psi}{\partial n} = q_{B} \text{on} S_{2} \right).$$

$$(3.27)$$

Having established our stationary and extremum principles, we now wish to consider the stationary principle of Brand and Lahey [3]. These authors introduce the functional [3, eqn. 12].

$$J_{BL} = \int_{R} \boldsymbol{q} \cdot \boldsymbol{q} \, dV + \int_{S_2} \boldsymbol{n} \cdot \boldsymbol{q} \, H \, dS \,, \qquad (3.28)$$

where

$$q = -\operatorname{grad} \Phi = -K(T) \operatorname{grad} T, \qquad (3.29)$$

$$H = \Phi = \int_{\tau_0}^{T} K(v) dv .$$
 (3.30)

Here Φ is our trial function which is related to the temperature trial function T by (3.30), giving $\Phi = \phi$ when $T = \tau$ (see equations (2.4) and (2.5)). Hence (3.28) is (in our notation)

$$J_{BL} = \int_{R} (\operatorname{grad} \Phi)^2 dV - \int_{S_2} (\mathbf{n} \cdot \operatorname{grad} \Phi) \Phi dS .$$
(3.31)

Brand and Lahey [3] state that this functional is stationary for $T = \tau$ (i.e. $\Phi = \varphi$), for admissible functions which satisfy the given boundary conditions (2.2) and (2.3), viz.

$$\Phi = \varphi_B \text{ on } S_1 , \qquad (3.32)$$

and

$$\boldsymbol{n} \cdot \operatorname{grad} \boldsymbol{\Phi} = \boldsymbol{q}_B \quad \text{on} \quad \boldsymbol{S}_2 \;. \tag{3.33}$$

This statement is correct if the volume integral in (3.31) is multiplied by the factor $\frac{1}{2}$. Then we have the corrected Brand–Lahey functional

(corrected)
$$J_{BL} = \frac{1}{2} \int_{R} (\operatorname{grad} \Phi)^2 dV - \int_{S_2} (\mathbf{n} \cdot \operatorname{grad} \Phi) \Phi dS$$
. (3.34)

If conditions (3.32) and (3.33) are imposed on Φ then our functional $J(\Phi)$ in (3.10), reduces to (3.34). However, one of the main points of our stationary result for J in (3.10) is that *no* essential conditions whatever need be imposed on the trial function Φ . Extremum principles, as opposed to stationary principles, are another matter however, and we have seen in (3.24) that the *minimum* principle for $J(\Phi)$ holds only for functions Φ which do satisfy one of the boundary conditions, namely $\Phi = \varphi_B$ on S_1 .

4. Problem II

This is the same as Problem I except that boundary condition (2.3) is replaced by

$$\mathbf{n} K(\tau) \text{ grad } \tau = f(\tau) \text{ on } S_2, \qquad (4.1)$$

with f a specified function but neither $K(\tau)$ grad τ nor τ given on S_2 . Using (2.4) – (2.6) we can reformulate Problem II as

$$\nabla^2 \varphi = 0 \quad \text{in } R , \qquad (4.2)$$

$$\varphi = \varphi_B \text{ on } S_1 , \qquad (4.3)$$

$$\boldsymbol{n} \cdot \operatorname{grad} \varphi = b(\varphi) \text{ on } S_2 , \qquad (4.4)$$

Journal of Engineering Math., Vol. 6 (1972) 23-30

where

$$b(\varphi) = f(\tau) , \qquad (4.5)$$

 φ and τ being related through (2.4). We now proceed to find variational principles for this boundary value problem.

5. Variational Principles for Problem II

As for Problem I we rewrite equation (4.2) in canonical form

grad
$$\Phi = U = \frac{\partial H}{\partial U}$$
 in R , (5.1)

$$-\operatorname{div} U = 0 = \frac{\partial H}{\partial \Phi} \text{ in } R , \qquad (5.2)$$

with

$$\varphi = \varphi_B \text{ on } S_1 , \qquad (5.3)$$

and
$$n \cdot I$$

$$\mathbf{u} \cdot \boldsymbol{U} = \boldsymbol{b}(\boldsymbol{\Phi}) \quad \text{on } S_2 \,. \tag{5.4}$$

The exact solution of this problem will be denoted by (u, φ) . The associated generalized action functional is

$$I(U, \Phi) = \int_{R} U \cdot \operatorname{grad} \Phi dV - \frac{1}{2} \int_{R} U \cdot U dV - \int_{S_{1}} \mathbf{n} \cdot U(\Phi - \varphi_{B}) dS - \int_{S_{2}} B(\Phi) dS ,$$
(5.5)

$$= \int_{\mathcal{R}} (-\operatorname{div} U) \Phi dV - \frac{1}{2} \int_{\mathcal{R}} U \cdot U dV + \int_{S_1} \mathbf{n} \cdot U \phi_B dS + \int_{S_2} [\mathbf{n} \cdot U \Phi - B(\Phi)] dS,$$
(5.6)

where

$$B(\Phi) = \int_{\Phi_0}^{\Phi} b(v) dv .$$
(5.7)

This action functional differs from the functional $I(U, \Phi)$ in (3.7) and (3.8) only in the last surface integral. The modification used here follows from the work of Arthurs [6] on boundary conditions of the form (5.4).

The following results are readily obtained.

5(a). First variational principle. For arbitrary independent functions U, Φ the functional $I(U, \Phi)$ in (5.5) and (5.6) is stationary at (u, φ) , the solution pair of the boundary value problem described by equations (5.1) - (5.4).

5(b). Second variational principle. Let Φ be an admissible function, which need not satisfy any boundary conditions. Then using (5.5) we define a functional $J(\Phi)$ by

$$J(\Phi) = I(\text{grad } \Phi, \Phi) \tag{5.8}$$

$$= \frac{1}{2} \int_{R} (\operatorname{grad} \Phi)^{2} dV - \int_{S_{1}} (\Phi - \varphi_{B}) \mathbf{n} \cdot \operatorname{grad} \Phi dS - \int_{S_{2}} B(\Phi) dS$$
(5.9)
$$= I(\mathbf{u}, \varphi) + \delta^{2} J,$$
(5.10)

$$\delta^2 J = \frac{1}{2} \int_R \left[\operatorname{grad} \left(\Phi - \varphi \right) \right]^2 dV - \int_{S_1} \left(\Phi - \varphi_B \right) \mathbf{n} \cdot \operatorname{grad} \left(\Phi - \varphi \right) dS - \frac{1}{2} \int_{S_2} \left(\Phi - \varphi \right)^2 \frac{\overline{d^2 B}}{d\Phi^2} dS$$
(5.11)

is the second variation, the bar in the last integral indicating that the second derivative is evaluated for some function $\varphi + \varepsilon(\Phi - \varphi)$, $0 \leq \varepsilon \leq 1$. Thus $\dot{J}(\Phi)$ in (5.9) is stationary at φ .

(5.10)

(- - -)

5(c). Third variational principle. Let U be an admissible function which satisfies the essential condition

$$\operatorname{div} \boldsymbol{U} = \boldsymbol{0} \quad \text{in } \boldsymbol{V}. \tag{5.12}$$

In (5.6) we take $\Phi = b^{-1}(\mathbf{n} \cdot U)$ on S_2 , assuming that the inverse b^{-1} exists. This defines a functional G(U) by

$$G(U) = I(U, \Phi)$$
 $(\Phi = b^{-1}(n \cdot U) \text{ on } S_2)$ (5.13)

$$= -\frac{1}{2} \int_{\mathbb{R}} \left[\boldsymbol{U} \cdot \boldsymbol{U} \, d\boldsymbol{V} + \int_{S_1} \boldsymbol{n} \cdot \boldsymbol{U} \varphi_B \, dS + \int_{S_2} \left\{ \boldsymbol{n} \cdot \boldsymbol{U} b^{-1} (\boldsymbol{n} \cdot \boldsymbol{U}) - B[b^{-1} (\boldsymbol{n} \cdot \boldsymbol{U})] \right\} dS$$
(5.14)

$$= I(\boldsymbol{u}, \varphi) + \delta^2 G , \qquad (5.15)$$

where

$$\delta^2 G = -\frac{1}{2} \int_{\mathcal{R}} (U - u)^2 dV + \frac{1}{2} \int_{S_2} [b^{-1} (n \cdot U) - \varphi]^2 \frac{\overline{d^2 B}}{d\Phi^2} dS$$
(5.16)

is the second variation. Thus G(U) in (5.14) is stationary at u.

As in section 3, we take $U = \text{grad } \Psi$, where Ψ is intended to be an approximation to φ . Then from (5.14)

$$G(\operatorname{grad} \Psi) = -\frac{1}{2} \int_{\mathcal{R}} (\operatorname{grad} \Psi)^2 dV + \int_{S_1} \varphi_B \frac{\partial \Psi}{\partial n} dS + \int_{S_2} \left\{ \frac{\partial \Psi}{\partial n} b^{-1} \left(\frac{\partial \Psi}{\partial n} \right) - B \left[b^{-1} \left(\frac{\partial \Psi}{\partial n} \right) \right] \right\} dS ,$$
(5.17)

where by (5.12) the function Ψ must satisfy the essential condition

$$\nabla^2 \Psi = 0 \quad \text{in } V \,. \tag{5.18}$$

5(d). Minimum principle. If the function Φ in (5.9) satisfies

$$\boldsymbol{\Phi} = \boldsymbol{\varphi}_{\boldsymbol{B}} \quad \text{on} \quad \boldsymbol{S}_1 \,, \tag{5.19}$$

and if

$$\frac{d^2 B}{d\Phi^2} = \frac{db}{d\Phi} \le 0 \text{ for all } \Phi \text{ on } S_2, \qquad (5.20)$$

it follows from (5.11) that $\delta^2 J$ is non-negative. Hence by (5.10) we obtain the minimum principle

$$I(\boldsymbol{u},\varphi) \leq J(\boldsymbol{\Phi}), \tag{5.21}$$

where

$$J(\Phi) = \frac{1}{2} \int_{R} (\text{grad } \Phi)^2 dV - \int_{S_2} B(\Phi) dS$$
 (5.23)

subject to (5.19) and (5.20).

5(e). Maximum principle. If $B(\Phi)$ satisfies (5.20), it follows from (5.16) that $\delta^2 G$ is non-positive. Hence by (5.15) we obtain the maximum principle

$$G(\operatorname{grad} \Psi) \leq I(\boldsymbol{u}, \varphi),$$
 (5.23)

where $G(\text{grad } \Psi)$ is given in (5.17) with Ψ subject to the condition (5.18).

Now that we have established our stationary and extremum principles for Problem II, we

turn to the stationary principle of Brand and Lahey [3]. These authors introduce the functional, again using their notation, [3, eqn. 20].

$$J_{BL} = \int_{R} \boldsymbol{q} \cdot \boldsymbol{q} \, dV + \int_{S_2} g \, dS \,, \qquad (5.24)$$

where

$$q = -\operatorname{grad} \Phi = -K(T) \operatorname{grad} T , \qquad (5.25)$$

and

$$g = g(T) = -\int^{T} K(\mu) f(\mu) d\mu .$$
(5.26)

We use g instead of their G to avoid confusion with our functional G(U). In (5.25) Φ is our trial function which is related to T by

$$\Phi = \int_{\tau_0}^{\tau} K(v) dv .$$
(5.27)

If we set

$$\lambda = \int_{\tau_0}^{\mu} K(v) dv \tag{5.28}$$

then $\lambda = \Phi$ when $\mu = T$, and $\lambda = \varphi$ when $\mu = \tau$, and by (2.4) and (4.5) it follows that

$$b(\lambda) = f(\mu) . \tag{5.29}$$

Now consider

$$B(\Phi) = \int_{\Phi_0}^{\Phi} b(\lambda) d\lambda, \qquad \text{by definition (5.7)},$$

$$= \int_{\mu_0}^{T} f(\mu) \frac{d\lambda}{d\mu} d\mu, \qquad \text{by (5.29)},$$

$$= \int_{\mu_0}^{T} f(\mu) K(\mu) d\mu, \qquad \text{by (5.28)},$$

$$= -g(T), \qquad \text{by (5.26)}$$
(5.30)

Hence the Brand-Lahey functional (5.24) is, in our notation,

$$J_{BL} = \int_{R} (\text{grad } \Phi)^2 \, dV - \int_{S_2} B(\Phi) \, dS \,.$$
 (5.31)

Brand and Lahey [3] state that this functional is stationary for $T = \tau$ (i.e. $\Phi = \varphi$), for admissible functions which satisfy the given boundary condition (4.3), viz.,

$$\Phi = \varphi_B \text{ on } S_1 \,. \tag{5.32}$$

This is correct if the volume integral in (5.31) is multiplied by the factor $\frac{1}{2}$. Then we have the corrected functional

(corrected)
$$J_{BL} = \frac{1}{2} \int_{R} (\text{grad } \Phi)^2 dV - \int_{S_2} B(\Phi) dS$$
. (5.33)

If condition (5.32) is imposed on Φ , then our functional $J(\Phi)$ in (5.9) reduces to (5.33). However, to obtain our stationary result for $J(\Phi)$ in (5.9), no essential condition need be imposed on the trial function Φ .

In the special case when $f(\tau)$ does not depend on the temperature but rather is a prescribed function q_B on the boundary S_2 , these results for Problem II reduce, as they should, to those for Problem I.

REFERENCES

- [1] D. F. Hays, Variational formulation of the heat equation, Chapter 2 in Non-equilibrium thermodynamics, variational techniques, and stability. R. J. Donnelly et al., eds. U. of Chicago Press, (1966).
- [2] H. W. Butler, A minimum principle for heat conduction, Proc. 5th. U.S. National Congress of Appl. Mech. A.S.M.E., New York(1966) 739.
- [3] R. S. Brand and F. J. Lahey, Variational principles for steady heat conduction with mixed boundary conditions. J. Engineering Math., 3 (1969) 119-121.
- [4] A. M. Arthurs, Complementary variational principles, Clarendon Press, Oxford, (1970).
- [5] A. M. Arthurs, A note on Komkov's class of boundary value problems and associated variational principles, J. Math. Anal. Appl., 33 (1971) 402-407.
- [6] A. M. Arthurs, Extremum principles for a class of boundary-value problems, *Proc. Camb. Phil. Soc.*, 65 (1969) 803-806.

Journal of Engineering Math., Vol. 6 (1972) 23-30