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S U M M A R Y  
New stationary, maximum and minimum principles associated with the boundary value problem of steady heat con- 
duction with general boundary conditions are derived in a unified manner from the theory of complementary variation- 
al principles. One of the results contains the Brand-Lahey [3] stationary principle as a special case. 

1. Introduction 

There has been considerable interest recently in formulating the problem of heat conduction 
as a variational problem [1, 2, 3]. For example, Hays [1] has given an integral which is station- 
ary for the temperature distribution satisfying the heat conduction equation in a region R, 
provided that at all points of the surface of R either the temperature is prescribed or the normal 
heat flux vanishes. Butler [2] gives a much simpler integral for steady problems with the same 
type of boundary conditions. 

However, one might have the normal heat flux prescribed, rather than vanishing, on a portion 
of the bounding surface, or the even more complicated case when neither the temperature nor 
the normal heat flux is given but rather a relation between them as, for example, for a surface 
heated or cooled by convection or radiation. Stationary principles associated with these more 
complicated problems have been discussed by Brand and Lahey [3]. In this paper we derive 
new maximum and minimum principles for such problems from the theory of complementary 
variational principles [4]. One of our results contains the stationary principle of Brand and 
Lahey [3] as a special case. 

2. Problem I 

We consider the problem of finding the steady temperature distribution z in a region R bounded 
by a surface S, subject to the boundary conditions that (i)r is prescribed on $1, a portion of S, 
and (ii) the normal heat flux n. K (~) grad ~ is prescribed on $2 = S -  St, where K (~), the thermal 
conductivity, is some known function of z. The equations of this problem are therefore 

div[K(z) grad z] = 0 in R, (2.1) 
with 

=~B on $1, (2.2) 

n'K(r) grad z = q. on $2, (2.3) 

where rn and qn are known functions on the boundary. 
We now transform to a new dependent variable q0 by setting 

~o = K ( v ) d v  , (2.4) 
"C O 

where Zo is an arbitrary constant. It follows from (2.4) that 
grad ~o = K(z) grad z. (2.5) 
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Also we define 

p, = K(v)dv , (2.6) 
TO 

which is the prescribed value of ~0 on $1 corresponding to (2.2). Hence the problem described 
by equations (2.1)-(2.3) becomes 

V2cp = 0 in R ,  (2.7) 

with 
q) = q)8 on S1, (2.8) 

n' grad q~ = qB on S; .  (2.9) 

The variational problem associated with this boundary value problem will now be discussed. 

3. Variational Principles for Problem I 

To use the theory of complementary variational principles [4] we rewrite (2.7) in the canonical 
form 

8 H .  
grad �9 = U = ~-~ m R,  (3.1) 

8 H .  
- d i v U = 0 = ~  in R ,  

with 

and 
~b= ~on on $1, 

(3.2) 

(3.3) 

(3.4) n. U = qB o n  S 2 , 

A suitable Hamiltonian H in (3.1) and (3.2) is given by 

= u .  (3.5) 

The exact solution of this problem will be denoted by (u, ~0). Now we introduce the associated 
generalized action functional [4, page 21]. 

I (U, cb) = f R[ U. grad cb- H (U, #)] dV + [boundary terms] .  (3.6) 

In the present case this functional takes the form 

I(U, q~,= fR U.grad 4)dV-�89 ;R U ' U d V -  fsl n'U(q~-pB)dS- fs2qn4)dS, (3.7) 

= fR(-divU)~dV-�89 fRU'UdV+ fs n'U~~ ~s 
(3.8) 

The surface integrals in (3.7) and (3.8), corresponding to the mixed boundary conditions (3.3) 
and (3.4), were derived by Arthurs [5]. 

The following results are readily verified. 

3(a). First variational principle. For arbitrary independent functions U, 4~ the functional 
I (U, ~b) is stationary at (u, q~), the solution pair of the boundary value problem given by (3.1) - 
(3.4). 

3(b). Second variational principle. Let ~b be an admissible function, which need not satisfy any 
boundary conditions. Then using (3.7) we define a functional J (~)  by 
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J (~) = I (grad ~, ~b) (3.9) 

=�89 fR (grad ~)2dV - j;, (q)-~B)n" grad ~dS - is, qBcI) dS (3.10) 

= I(u, q ) ) + 6 2 J ,  ( 3 . 1 1 )  

where 

c3zJ =�89 f ,  l-grad(~b-cP)]ZdV - ~s (q)-~on)n.grad(~b-qo)dS (3.12) 
1 

is the second variation. Thus J(~b) in (3.10) is stationary at q~. 

3(c). Third variational principle. Let U be an admissible function which satisfies the conditions 

div U = 0 in V,  (3.13) 

n .  U = qB on Sz �9 ( 3 . 1 4 )  

Using (3.8) we define the functional G(U) by 

G(U) = I(U, ~), [U subject to conditions (3.13) and (3.14)] (3.15) 

= -  �89 f_ U'UdV + f_ n. CcpndS (3.16) 
d R  1 

= I(u, q))+62G, (3.17) 
where 

= -�89 JR (U-u)2dV (3.18) 

0 

~52G 

is the second variation. Thus G(U) in (3.16) is stationary at u. 
Since the exact function u is related to q~ by u = grad q), it is desirable to choose the function 

U to have the form 

U = grad 7", (3.19) 

where 7" is intended to be an approximation to (p. Then from (3.16) 

G(grad 7")-- 1 (grad 7")2dV + ~oB N d S ,  (3.2O) 
1 

where by (3.13) and (3.14) the function 7" must satisfy the essential conditions 

V 2 7" ~--- 0 in V,  (3.21) 

07' 
On q8 on $2. (3.22) 

3(d). Minimum principle. If the function �9 in (3.10) is made to satisfy the boundary condition 

= qgn on $1, (3.23) 

we see from (3.12) that 62 J is non-negative. Hence, by (3.11), we obtain the min imum principle 

I(u, q)) < J(~), (3.24) 

where 

a(~b)=�89 JR (grad cI))ZdV - js2q.eas on S1). (3.25) 

3(e). Maximum principle. Since fi2G in (3.18) is non-positive, it follows from (3.17) that the 
maximum principle 
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G(grad 7 j) < I(u, ~o) 

holds, where 

G(grad 7 j) = - �89 (grad qj)2 dV + ~Pn ~nn dS 
$I 

N. Anderson, A. M. Arthurs 

(3.26) 

V z ~ = 0 i n V ,  ~ =  qBonS . 

(3.27) 

Having established our stationary and extremum principles, we now wish to consider the 
stationary principle of Brand and Lahey [3]. These authors introduce the functional [3, eqn. 
12]. 

J,L: f, q.qdV + Is n.qI4dS, (3.28) 
O 2 

where 

q = - grad ~b = - K(T) grad T ,  (3.29) 

: f f  K(v)dv. (3.30) H =  ~b 

Here 45 is our trial function which is related to the temperature trial function T by (3.30), 
giving q~ = ~b when T =  r (see equations (2.4) and (2.5)). Hence (3.28)is (in our notation) 

JBL= I_ (grad eb)zdV - I~ (n.grad ~b)tbdS. (3.31) 
~R rib' 2 

Brand and Lahey [3] state that this functional is stationary for T = ~ (i.e. ~b = (p), for admissible 
functions which satisfy the given boundary conditions (2.2) and (2.3), viz. 

4~ = ~oB on $1, (3.32) 

and 
n 'grad  q5 = qB on S 2 . (3.33) 

This statement is correct if the volume integral in (3.31) is multiplied by the factor �89 Then we 
have the corrected Brand-Lahey functional 

(corrected) J , L : � 8 9  f ,  (grad ~b)zdV - fs2(n.grad ~b)cbdS. (3.34) 

If conditions (3.32) and (3.33) are imposed on �9 then our functional J(q~)in (3.10), reduces to 
(3.34). However, one of the main points of our stationary result for J in (3.10) is that no essential 
conditions whatever need be imposed on the trial function ~. Extremum principles, as opposed 
to stationary principles, are another matter however, and we have seen in (3.24) that the 
minimum principle for J (~)  holds only for functions 4~ which do satisfy one of the boundary 
conditions, namely q~ = ~0 B on $1. 

4. Problem II 

This is the same as Problem I except that boundary condition (2.3) is replaced by 

n.K(z) grad'c = f ( z ) o n  S 2 , (4.1) 

w i t h f a  specified function but neither K('c) grad ~ nor z given on $2. Using (2.4) - (2.6) we can 
reformulate Problem II as 

V2q~ = 0 in R ,  (4.2) 

(p = q0~ on S t , (4.3) 

n" grad ~o = b (<p) on S 2 , (4.4) 
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where 
b(~0) =f('c), (4.5) 

q) and z being related through (2.4). We now proceed to find variational principles for this 
boundary value problem. 

5. Variational Principles for Problem II 

As for Problem I we rewrite equation (4.2) in canonical form 

0 H .  
grad ~ = U = ~U m R,  (5.1) 

~H 
' d i v U = 0 = ~  in R,  (5.2) 

with 
~=(PB on $1, (5.3) 

and 
n ' U =  b(@) on S: .  (5.4) 

The exact solution of this problem will be denoted by (u, ~0): The associated generalized action 
functional is 

I(U,C)= f U'grad a'dV-�89 f, U'VdV- fs n'U(q'-q,,,)dS- fs B('t')dS, 
(5.5) 

= f f ' ( - d i v  U)~bdV 

where 

5~ B(cP) = b(v)dv . 
Do 

1 f V.VdV+ fs n'V BdS+ fs 
R 1 2 

(5.6) 

(5.7) 

This action functional differs from the functional I (U, ~b) in (3.7) and (3.8) only in the last 
surface integral. The modification used here follows from the work of Arthurs [6] on boundary 
conditions of the form (5.4). 

The following results are readily obtained. 

5(a). First variational principle. For arbitrary independent functions U, r the functional 
I (U, r in (5.5) and (5.6) is stationary at (u, ~0), the solution pair of the boundary value problem 
described by equations (5.1)-(5.4). 

5(b). Second variational principle. Let q~ be an admissible function, which need not satisfy any 
boundary conditions. Then using (5.5) we define a functional J(~) by 

J(~) = / (grad  ~, r (5.8) 

=�89 fR (grad cb)2dV - fs (~b-q%)n.grad cbdS - fs B(qOdS (5.9) 
1 2 

= I(u, q})+<52J, (5.10) 
where 

~/2B 
3aJ= �89 [ g r a d ( ~ - q 0 ] 2 d V -  f s, (~-~~ (~-<p)dS-�89 fs: (r176 -~ dS 

(5.11) 
is the second variation, the bar in the last integral indicating that the second derivative is 
evaluated for some function ~o+c(~b-cp), 0N e_< 1. Thus 5r(45) in (5.9) is stationary at cp. 
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5(c). Third variational principle. Let U be an admissible function which satisfies the essential 
condition 

div U = 0  in V. (5.12) 

In (5.6) we take r  ~ ( n  U) on $2, assuming that the inverse b- 1 exists. This defines a func- 
tional G(U) by 

G(U) = I(U, eb) (r  �9 U) on $2) (5.13) 

= -�89 U.UdV + n'U~oBdS + {n 'Ub-t (n 'U)-B[b- l (n 'U)]}dS 
1 2 (5.14) 

= I(u, r + 6 a G, (5.15) 

where 

fR d2B 6 2 G =  _�89 (U-u)ZdV+�89 [b - l (n .V ) -q~]2 -~dS  (5.16) 
3sz 

is the second variation. Thus G(U) in (5.14) is stationary at u. 
As in section 3, we take U =  grad ~,  where ~ is intended to be an approximation to q~. 

Then from (5.14) 

G(grad ~ ) =  - � 8 9  (grad ~p)2 dV + q~B ~n dS 

+ -~n ~-n - U  b -1 s2 ~ n  dS 

where by (5.12) the function !/j must satisfy the essential condition 
(5.17) 

V 2 ~ = 0 in  V .  (5.18) 

5 (d). Minimum principle. If the function q~ in (5.9) satisfies 

4~=go R on $1, (5.19) 

and if 

d 2 B db 
d(b2 - d-~< 0 for all �9 on Sz, (5.20) 

it follows from (5.11) that •2 j is non-negative. Hence by (5.10) we obtain the minimum principle 

i(u, (5.21) 
where 

J(~)  = �89 fR (grad ~)2dV - fs2B(q))dS (5.23) 

subject to (5.19) and (5.20). 

5(e). Maximum principle. If B((b) satisfies (5.20), it follows from (5.16) that c52 G is non-positive. 
Hence by (5.15) we obtain the maximum principle 

G(grad 70 <- I(u, ~o), (5.23) 

where G(grad 7 j) is given in (5.17) with ~ subject to the condition (5.t8). 
Now that we have established our stationary and extremum principles for Problem II, we 
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t urn to the stationary principle of Brand and Lahey [3]. These authors introduce the functional, 
again using their notation, [3, eqn. 20]. 

J.L=f qqdV+fsgdS, (5.24) 
R 2 

where 
q = - grad ~b = - K(T)  grad T ,  (5.25) 

and 

g = g (T) = - K (#)f(#) d#.  (5.26) 

We use g instead of their G to avoid confusion with our functional G (U). In (5.25) �9 is our trial 
function which is related to T by 

cb = K (v)dv . (5.27) 
17 o 

If we set 

2 = K(v)dv (5.28) 
TO 

then 2 = �9 when # = T, and 2 = ~o when # = z, and by (2.4) and (4.5) it follows that 

b(2) = f ( # ) .  (5.29) 

Now consider 

f~ B (4~) = b (2) d2,  by definition (5.7), 

F r d2 
Ju l  f (#)  ~ d# ,  by (5.29), 

= f ( g ) K ( # ) d # ,  by (5.28), 
Uo 

= - 9(T) ,  by (5.26) (5.30) 

Hence the Brand-Lahey functional (5.24) is, in our notation, 

J~L= ~R (grad q))zdV - f s 2 B ( ~ ) d S .  (5.31) 

Brand and Lahey [3] state that this functional is stationary for T = z (i.e. 4~ = ~o), for admissible 
functions which satisfy the given boundary condition (4.3), viz., 

= q~B on S 1 . (5.32) 

This is correct if the volume integral in (5.31) is multiplied by the factor �89 Then we have the 
corrected functional 

(corrected) J,L = �89 f ,  (grad ~)2 dV - fs2 B(cI))dS. (5.33) 

If condition (5.32) is imposed on ~, then our functional J(4~) in (5.9) reduces to (5.33). However, 
to obtain our stationary result for J (~)  in (5.9), no essential condition need be imposed on the 
trial function ~. 

In the special case whenf(z) does not depend on the temperature but rather is a prescribed 
function qB on the boundary $2, these results for Problem II reduce, as they should, to those 
for Problem I. 
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