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SUMMARY

New stationary, maximum and minimum principles associated with the boundary value problem of steady heat con-
duction with general boundary conditions are derived in 2 unified manner from the theory of complementary variation-
al principles. One of the results contains the Brand-Lahey [3] stationary principle as a special case.

1. Introduction

There has been considerable interest recently in formulating the problem of heat conduction
asa variational problem [1, 2, 3]. For example, Hays [ 1] has given an integral which is station-
ary for the temperature distribution satisfying the heat conduction equation in a region R,
provided that at all points of the surface of R either the temperature is prescribed or the normal
heat flux vanishes. Butler [2] gives a much simpler integral for steady problems with the same
type of boundary conditions.

However, one might have the normal heat flux prescribed, rather than vanishing, on a portion
of the bounding surface, or the even more complicated case when neither the temperature nor
the normal heat flux is given but rather a relation between them as, for example, for a surface
heated or cooled by convection or radiation. Stationary principles associated with these more
complicated problems have been discussed by Brand and Lahey [3]. In this paper we derive
new maximum and minimum principles for such problems from the theory of complementary
variational principles [4]. One of our results contains the stationary principle of Brand and
Lahey [3] as a special case.

2. Problem I

We consider the problem of finding the steady temperature distribution 7 in a region R bounded
by a surface S, subject to the boundary conditions that (i) is prescribed on S, a portion of S,
and (ii) the normal heat flux n- K (¢) grad 7 is prescribed on S, =S — S, where K (7), the thermal
conductivity, is some known function of 7. The equations of this problem are therefore

div[K(7r) grad 7] =0 in R, (2.1)
with

t=tz 0n S,, (2.2)

nK{rygradt=gqz on S,, (2.3)

where 75 and gy are known functions on the boundary.
We now transform to a new dependent variable ¢ by setting

= f K(v)dv, (24)
where 1, is an arbitrary constant. It follows from (2.4) that
grad ¢ = K(1) grad 7 . (2.5)
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Also we define

0y = f " K@)dv, (2.6)

To

which is the prescribed value of ¢ on S; corresponding to (2.2). Hence the problem described
by equations (2.1) — (2.3) becomes

V2p=0in R, (2.7)
with

¢=¢p on Sy, (2.8)

n-grad p=gqz on S,. (2.9)

The variational problem associated with this boundary value problem will now be discussed.
3. Variational Principles for Problem I
To use the theory of complementary variational principles [4] we rewrite (2.7) in the canonical

form
oH

grad¢=U=5[~]1n R, (3.1)

—divU=0=ggin R, (3.2)
with

¢= (pB on Sl 5 (33)
and

nU=¢qzon S,. (34)
A suitable Hamiltonian H in (3.1) and (3.2) is given by

H(U, #)=iU-U. (3.5)

The exact solution of this problem will be denoted by (u, ¢). Now we introduce the associated
generalized action functional [4, page 21].

I(U, ) =J [U-grad @ —H(U, ®)]dV +[boundary terms] . (3.6)
R
In the present case this functional takes the form

(U, d) = JR U-grad ¢dV —4 JR U-UdV—J n-U(®—@g)dS — L qs®dS, (3.7)

S1

U'UdV+J

S

= L (—div U)chV—%J

R

n-UpgdS + J (n-U—gqg)®dsS .
S2
(3.8)

The surface integrals in (3.7) and (3.8), corresponding to the mixed boundary conditions (3.3)
and (3.4), were derived by Arthurs [5].
The {ollowing results are readily verified.

3(a). First variational principle. For arbitrary independent functions U, @ the functional
I(U, ®)is stationary at (u, ¢), the solution pair of the boundary value problem given by (3.1) —
(3.4).

3(b). Second variational principle. Let @ be an admissible function, which need not satisfy any
boundary conditions. Then using (3.7) we define a functional J(®) by
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J(®) = I(grad @, P) (3.9)
=3 L (grad @)Y dV — LI (P—pp)n-grad ¢dS — J& qp®dS (3.10)
= I(u, @)+ 627, (3.11)
where
2J=3 L [grad (@ —¢)]?dV — L (@ —@p) n-grad (P —¢)dS (3.12)

is the second variation. Thus J(®) in (3.10) is stationary at @.

3(c). Third variational principle. Let U be an admissible function which satisfies the conditions

divU=01in V, (3.13)
n-U=gqg on §,. (3.14)

Using (3.8) we define the functional G(U) by
G(U)=1(U, ¢), [U subject to conditions (3.13) and (3.14)] (3.15)
=—%J U-UdV+J n-UgpgdS (3.16)

R Sy
=1I(u, p)+6°G, (3.17)
where
52G=—~1 J (U—u)?dV (3.18)
R

is the second variation. Thus G(U) in (3.16) is stationary at u. .
Since the exact function u is related to ¢ by u=grad ¢, it is desirable to choose the function
U to have the form

U=grad ¥, (3.19)
where ¥ is intended to be an approximation to ¢. Then from (3.16)
L 5 ' ov
G(grad )= —% | (grad ¥)*dV + | ¢p—— dS, (3.20)
R s, on
where by (3.13) and (3.14) the function ¥ must satisfy the essential conditions
VP =0in V, (3.21)
oY
5, = ds on S, . (3.22)

3(d). Minimum principle. If the function @ in (3.10) is made to satisfy the boundary condition

P=¢zonS,, ' (3.23)
we see from (3.12) that 6 J is non-negative. Hence, by (3.11), we obtain the minimum principle

I(u, 9) = J(®), (3.24)
where

J(@)=% L (grad @)’ dV — L 4zPdS  (D=gy on S,). (3.25)

3(e). Maximum principle. Since 62 G in (3.18) is non-positive, it follows from (3.17) that the
maximum principle
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G(grad ¥) < I(u, ) (3.26)

holds, where

~

G(grad ¥) = ~%j (grad ¥)*dv + J ©p i;:
R

St

o
ds <V2‘I’=0 inVv, = qBonSZ>.
(3.27)

Having established our stationary and extremum principles, we now wish to consider the
stationary principle of Brand and Lahey [3]. These authors introduce the functional [3, egn.
12].

Jgr = J q-qdV +J r-qHJ4S, (3.28)
° R S2
where
g = —gradd=—K(T)grad T, (3.29)
T
H=¢ =f K(v)dv. (3.30)

Here & is our trial function which is related to the temperature trial function T by (3.30),
giving @ =¢ when T=1 (see equations (2.4) and (2.5)). Hence (3.28) is (in our notation)

Jpr = f (grad @) dV — J (n-grad @)PdS . (3.31)
R S2
Brand and Lahey [3] state that this functional is stationary for T=1 (i.e. =), for admissible
functions which satisfy the given boundary conditions (2.2) and (2.3), viz.
¢=(PB on Sl 5 (3.32)
and
n-grad =gy on §,. (3:33)

This statement is correct if the volume integral in (3.31) is multiplied by the factor 3. Then we
have the corrected Brand—Lahey functional

(corrected) JBL=%J (grad ®)*dV — f (n-grad @) dsS . (3.34)
R

Sz

If conditions (3.32) and (3.33) are imposed on @ then our functional J(®) in (3.10), reduces to
(3.34). However, one of the main points of our stationary result for J in (3.10) is that no essential
conditions whatever need be imposed on the trial function @. Extremum principles, as opposed
to stationary principles, are another matter however, and we have seen in (3.24) that the
minimum principle for J(®) holds only for functions @ which do satisfy one of the boundary

conditions, namely & =@z on S;.
4. Problem 11
This is the same as Problem I except that boundary condition (2.3) is replaced by

n-K(r)gradt=f(z) on S,, (4.1)

with fa specified function but neither K(r) grad 7 nor 7 given on S,. Using (2.4) — (2.6) we can
reformulate Problem II as

V:p=0in R, (4.2)
¢ =¢gon S,
n-grad ¢ =b(p) on S,, 44)
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where
b(o)=1(z), (4.5)

¢ and 7 being related through (2.4). We now proceed to find variational principles for this
boundary value problem.

5. Variational Principles for Problem 11

As for Problem I we rewrite equation (4.2) in canonical form

0H .
grad ¢ =U = ap R, (5.1)
. oH .
divU=0 = 55 0 R, (5.2)
- with
&=¢z on §,, » (5.3)
and
n-U=hb(P) on §,. (5.4)

The exact solution of this problem will be denoted by (u, ¢). The associated generalized action
functional is

(U, ®) =J U-grad ®dV —%J U-Udv —J n-U(®—qz)dS —j B(®)dS
R R

” (5.5)

S

- J“(~—div U)odv — %J

R

U~UdV+J n-Uq)BdS+J [n Ud—B(@)]dS,
S S2
(56)

B(®) = J * b(o)dv (57)

Do
This action functional differs from the functional 7(U, ¢) in (3.7) and (3.8) only in the last
surface integral. The modification used here follows from the work of Arthurs [6] on boundary
conditions of the form (5.4).
The following results are readily obtained.

R

5(a). First variational principle. For arbitrary independent functions U, ¢ the functional
HU, ®)in (5.5)and (5.6) is stationary at (u, ¢), the solution pair of the boundary value problem
described by equations (5.1) — (5.4).

5(b). Second variational principle. Let @ be an admissible function, which need not satisfy any
boundary conditions. Then using (5.5) we define a functional J (&) by

J(®) = I(grad @, @) (5.8)
=%f (grad @)*dV — f (®—q@p)n-grad ®@dS — J B(®)ds (59)
R Si S2
=I{u, ) +8*J, (5.10)
where
0*J =73 | lerad(@—@)]*dV — | (P—@sn-grad(®~¢)dS—3| (2—9) -—dS
JR St Sz ao

‘ (5.11)

is the second variation, the bar in the last integral indicating that the second derivative is
evaluated for some function ¢ +&(®—¢), 0= ¢< 1. Thus J(P) in (5.9) is stationary at ¢.
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5(¢). Third variational principle. Let U be an admissible function which satisfies the essential
condition

divU=0in V. (5.12)

In (5.6) we take ®=>b"'(n- U) on S,, assuming that the inverse b~ " exists. This defines a func-
tional G(U) by

G(U)=I1(U,d) (®=b"'(n-U) on §,) (5.13)
=—%f U-UdVJrf n-UpgdS + f {n-Ub~'(n-U)—B[b~'{n U)]}dS
B s 52 (5.14)
=1I(u, 9)+6*G, (5.15)
where
. _ &’B
8%G = —%f (U—u)ZdV+7J [b 1(n~U)~¢]2WdS (5.16)

is the second variation. Thus G(U) in (5.14) is stationary at u.
As in section 3, we take U=grad ¥, where ¥ is intended to be an approximation to ¢.
Then from (5.14)

ik d
JR Sy on

S {w G- @

where by (5.12) the function ¥ must satisfy the essential condition 17

V¥ =0in V. (5.18)
5(d). Minimum principle. If the function @ in (5.9) satisfies

P=¢p on Sy, (5.19)
and if

gp—lj = %gOfor alld on §,, (520)
it follows from (5.11) that 2 J is non-negative. Hence by (5.10) we obtain the minimum principle

I(n, p)< J (D), (5.21)
where

J(®)=1% L (grad ®)*dV — L B(®)dS (5.23)

subject to (5.19) and (5.20).
5(e). Maximum principle. If B(®) satisfies (5.20), it follows from (5.16) that 52 G is non-positive.
Hence by (5.15) we obtain the maximum principle

G(grad V)< I(u, @), (5.23)

where G (grad ¥) is given in (5.17) with ¥ subject to the condition (5.18).
Now that we have established our stationary and extremum principles for Problem II, we
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turn to the stationary principle of Brand and Lahey [3]. These authors introduce the functional,
again using their notation, [3, eqn. 20].

JBLZJ ‘I'qu“l‘J gds, (5.24)
R Sz
where
g=—gradd=—- K(T)grad T, (5.25)
and
T
g=a(0)= - [ Kiwde. (526

We use g instead of their G to avoid confusion with our functional G(U). In (5.25) @ is our trial
function which is related to T by

® = j " K@)ds. (527)
If we set ©
1= j " K()do (5.28)

then A=¢@ when u=T, and A=¢ when p=1, and by (2.4) and (4.5) it follows that
b(A) =1 (u). (529)

Now consider

B(®) = J: b(A)dA, by definition (5.7),
T dA
= | ke, by (29)
= — g(T), by (5.26) (5.30)

Hence the Brand-Lahey functional (5.24) is, in our notation,

Jor= j (grad ®)*dV — j B(®)dS . (5.31)
R S2

Brand and Lahey [ 3] state that this functional is stationary for T=1 (i.e. =), for admissible

functions which satisfy the given boundary condition (4.3), viz.,

®=¢p on §;. (532)

This is correct if the volume integral in (5.31) is multiplied by the factor 4. Then we have the
corrected functional ‘

(corrected) Jg =4 J (grad ®)*dV — J B(®)dS . (5.33)
R S2

If condition (5.32) is imposed on @, then our functional J (@) in (5.9) reduces to (5.33). However,
to obtain our stationary result for J(®) in (5.9), no essential condition need be imposed on the
trial function @.

In the special case whenf(7) does not depend on the temperature but rather is a prescribed
function gz on the boundary S,, these results for Problem II reduce, as they should, to those
for Problem L
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